Site
»çÀÌÆ®
ȸ¿øÁ¤º¸
³í¹®
ÇÐȸ¼Ò°³
ÀΰøÁö´ÉÇÐȸ
ȸÀåÀλç
¿¬Çõ
ÀÓ¿ø¸í´Ü
Á¤°ü
ÇùÂù±â°ü
¿À½Ã´Â ±æ
ÇмúÇà»ç
±¹³»Çмú´ëȸ
ºÐ°úÇмú´ëȸ
ÃâÆǹ°
Çмú´ëȸ ³í¹®Áý
°Ô½ÃÆÇ
ÇÐȸ¼Ò½Ä
Çà»ç¾È³»
±¸ÀÎ/±¸Á÷¶õ
ȸ¿øÁ¤º¸
ȸ¿ø°¡ÀԾȳ»
Ưº°È¸¿ø»ç
ÇмúÇà»ç
Korean AI Association
ÇмúÇà»ç
±¹³»Çмú´ëȸ
ºÐ°úÇмú´ëȸ
2024 ÀΰøÁö´É µ¿°è ´Ü±â°ÁÂ
Àλç±Û
Çà»ç¾È³»
ÇÁ·Î±×·¥
¿¬»ç ¹× ÃÊ·Ï (14ÀÏ)
¿¬»ç ¹× ÃÊ·Ï (15ÀÏ)
¿¬»ç ¹× ÃÊ·Ï (16ÀÏ)
Çà»çÀå ¾È³»
»çÀüµî·Ï
> ÇмúÇà»ç >
±¹³»Çмú´ëȸ
±¹³»Çмú´ëȸ
¿¬»ç ¹× ÃÊ·Ï (15ÀÏ)
ÃÖ¿µ±Ù ±³¼ö(¼º±Õ°ü´ëÇб³)
Title: Basics of Causal Inference and Learning
Abs
:
This tutorial presents the essential concepts of causal inference and learning, a vital component of contemporary data science. This session will cover selected topics including: (i) "Causal Identification," focusing on how to identify and manipulate causal relationships within the Potential Outcome Framework (POF) and Structural Causal Model (SCM) at the population level, (ii) "Causal Effect Estimation," exploring methods to measure the impact of causality from observed data given identification, and (iii) "Causal Discovery," examining techniques to recover cause-effect pairs of SCM from existing data. Some key foundational insights of probability and statistical theory will be touched as needed.
Bio
:
His research interests are stat/ML methods and applications for multivariate data analysis, causal inference, multi-armed bandits, and dynamic pricing. He received the Ph.D. degree in statistics in 2015. Since 2023, he has been an Assistant Professor at the Mathematics Education Department, Sungkyunkwan University, Seoul, Korea. From 2019 to 2023, he served as an Assistant Professor at the Department of Statistics of Sookmyung Women's University, Seoul, Korea. From 2018 to 2019, he was a Research Scientist at Data Labs of SK Telecom, Seoul, Korea. From 2016 to 2018, he worked as a Postdoctoral Fellow at the Public Health Division of Fred Hutchinson Cancer Research Center, Seattle, USA.
ÀÓ¼ººó ±³¼ö(°í·Á´ëÇб³)
Title: Diffusion Model in a Nutshell: Theory & Algorithm
Abs
:
º» Æ©Å丮¾ó¿¡¼´Â Diffusion Model ÀÇ ÀÌ·ÐÀû ¹è°æ°ú ¾Ë°í¸®ÁòÀ» ¼Ò°³ÇÕ´Ï´Ù.
Bio
:
2023.03 - ÇöÀç: Korea University, Department of Statistics, Assistant Professor
2020.01 - 2023.02: UNIST Artificial Intelligence Graduate School, Assistant Professor
2018.01 - 2019.12: Kakao Brain, Research Scientist
2017.02 - 2017.07: DeepBio, Research Engineer
2016.03 - 2017.01: Samsung Fire & Marine Insurance, Junior Professional
2016.02 Korea University, Ph.D. in Mathematics
ÃÖÀ±Àç ±³¼ö(KAIST)
Title: ÀüÀÚÀǹ«±â·ÏÀ» ÀÌ¿ëÇÑ ÇコÄɾî ÀΰøÁö´É ¿¬±¸
Abs
:
ÀÌ Æ©Å丮¾óÀº ÀÇ·á µ¥ÀÌÅÍ, ±¸Ã¼ÀûÀ¸·Î ÀüÀÚÀǹ«±â·ÏÀ» ÀÌ¿ëÇÑ ÇコÄɾî ÀΰøÁö´É ¿¬±¸¿¡ ´ëÇØ ¼Ò°³ÇÕ´Ï´Ù. ÀüÀÚÀǹ«±â·ÏÀº º´¿ø¿¡¼ ȯÀÚÀÇ Ä¡·á¿Í °ü·ÃÇÏ¿© ¼öÁýµÇ´Â ¸ðµç Á¤º¸¸¦ ¶æÇÕ´Ï´Ù. ÀÌ °¿¬¿¡¼´Â ¸ÕÀú ÀüÀÚÀǹ«±â·ÏÀÇ ±¸Á¶¿¡ ´ëÇؼ °£´ÜÇÏ°Ô ¼³¸íÇÑ ÈÄ, À̸¦ ÀÌ¿ëÇؼ ¼öÇàÇÒ ¼ö ÀÖ´Â ´ëÇ¥ÀûÀÎ ÀΰøÁö´É ¿¬±¸ ÅäÇÈ ¼¼ °¡Áö, Áø´Ü ¹× ¿¹Ãø, ¸ÖƼ¸ð´Þ ÇнÀ, ÁúÀÇÀÀ´äÀ» ¼Ò°³ÇÕ´Ï´Ù.
Bio
:
2020 ³â 3 ¿ù - ÇöÀç: KAIST AI ´ëÇпø, Á¶±³¼ö
2018 ³â 9 ¿ù – 2020 ³â 2 ¿ù: Google Brain, Software Engineer
2017 ³â 2 ¿ù – 2017 ³â 8 ¿ù: DeepMind, Google Research Intern
2010 ³â 2 ¿ù – 2014 ³â 4 ¿ù: Çѱ¹ÀüÀÚÅë½Å¿¬±¸¿ø (ETRI), ¿¬±¸¿ø
¹Ú»ç, 2018 ³â 8 ¿ù: Georgia Tech, Computer Science
¼®»ç, 2009 ³â 8 ¿ù: KAIST, Àü»êÇаú
Çлç, 2007 ³â 8 ¿ù: ¼¿ï´ëÇб³, ÄÄÇ»ÅÍ°øÇаú