Site
»çÀÌÆ®
ȸ¿øÁ¤º¸
³í¹®
ÇÐȸ¼Ò°³
ÀΰøÁö´ÉÇÐȸ
ȸÀåÀλç
¿¬Çõ
ÀÓ¿ø¸í´Ü
Á¤°ü
ÇùÂù±â°ü
¿À½Ã´Â ±æ
ÇмúÇà»ç
±¹³»Çмú´ëȸ
ºÐ°úÇмú´ëȸ
ÃâÆǹ°
Çмú´ëȸ ³í¹®Áý
°Ô½ÃÆÇ
ÇÐȸ¼Ò½Ä
Çà»ç¾È³»
±¸ÀÎ/±¸Á÷¶õ
ȸ¿øÁ¤º¸
ȸ¿ø°¡ÀԾȳ»
Ưº°È¸¿ø»ç
ÇмúÇà»ç
Korean AI Association
ÇмúÇà»ç
±¹³»Çмú´ëȸ
ºÐ°úÇмú´ëȸ
2024 ÀΰøÁö´É µ¿°è ´Ü±â°ÁÂ
Àλç±Û
Çà»ç¾È³»
ÇÁ·Î±×·¥
¿¬»ç ¹× ÃÊ·Ï (14ÀÏ)
¿¬»ç ¹× ÃÊ·Ï (15ÀÏ)
¿¬»ç ¹× ÃÊ·Ï (16ÀÏ)
Çà»çÀå ¾È³»
»çÀüµî·Ï
> ÇмúÇà»ç >
±¹³»Çмú´ëȸ
±¹³»Çмú´ëȸ
ÇÁ·Î±×·¥
2024³â ÀΰøÁö´É µ¿°è ´Ü±â°Á ÇÁ·Î±×·¥
2¿ù 14ÀÏ(¼ö)
½Ã°£
¼¼ºÎ³»¿ë
09:00~10:30
Deep Learning: Basics and Recent Trend
À±¼¼¿µ ±³¼ö(KAIST)
10:30~12:00
An Introduction to Mathematical Theory of Deep Learning
À±Ã¶Èñ ±³¼ö(KAIST)
12:00~13:30
Á¡½É
13:30~14:30
Invited talk:
Deep Learning Approaches from Program Language to Natural Language
ÀÌÁöÇü ±³¼ö(¼º±Õ°ü´ëÇб³)
14:30~16:30
Self-supervised Multimodal Learning
±è°ÇÈñ ±³¼ö(¼¿ï´ëÇб³)
16:30~18:00
Conformal Prediction for Trustworthy AI
¹Ú»óµ· ±³¼ö(POSTECH)
2¿ù 15ÀÏ(¸ñ)
½Ã°£
¼¼ºÎ³»¿ë
09:00~12:00
Basics of Causal Inference and Learning
ÃÖ¿µ±Ù ±³¼ö(¼º±Õ°ü´ëÇб³)
12:00~13:30
Á¡½É
13:30~15:30
Diffusion Model in a Nutshell: Theory & Algorithm
ÀÓ¼ººó ±³¼ö(°í·Á´ëÇб³)
15:30~17:30
ÀüÀÚÀǹ«±â·ÏÀ» ÀÌ¿ëÇÑ ÇコÄɾî ÀΰøÁö´É ¿¬±¸
ÃÖÀ±Àç ±³¼ö(KAIST)
2¿ù 16ÀÏ(±Ý)
½Ã°£
¼¼ºÎ³»¿ë
09:00~10:30
Tutorial on Large Language Models
Ȳ¿ø¼® ±³¼ö(¼¿ï½Ã¸³´ëÇб³)
10:30~12:00
Unlocking Efficiency in LLMs: The Role of Model Compression
±Ç¼¼Áß ¸®´õ(³×À̹öŬ¶ó¿ìµå)
12:00~13:30
Á¡½É
13:30~15:30
Learning on Graph and its Application to Biomedical Data
¹ÚÂù¿µ ±³¼ö(KAIST)
15:30~17:30
Reinforcement Learning: Basics and Applications
¿ÁÁ¤½½ ±³¼ö(POSTECH)