¢º Deep Learning with Time Series Data
|
 |
°»ç
ÃÖÀç½Ä ±³¼ö(UNIST)
³»¿ë
½Ã°è¿ µ¥ÀÌÅÍ´Â ±ÝÀ¶, ±º»ç, ³¯¾¾µî ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼ ¼øÂ÷ µ¥ÀÌÅ͸¦ Ç¥ÇöÇϴµ¥ ÇʼöÀûÀÎ µµ±¸ÀÌ´Ù. ÃÖ±Ù µö·¯´×ÀÇ ¹ßÀüÀº À̹ÌÁö ¹× µ¿¿µ»ó ºÐ¼®ÀÇ ½Ã°¢ÀÎÁö¸¦ ³Ñ¾î¼, À½¼º ¹× ³úÆÄ¿Í °°Àº ½Ã°è¿ ½ÅÈ£¸¦ ºÐ¼®Çϰí ÀÎÁöÇϴµ¥µµ Å« ¹ßÀüÀÌ ÀÖ¾ú´Ù. º» °ÀÇ¿¡¼´Â µö·¯´× ±â¹Ý ½Ã°è¿ µ¥ÀÌÅÍ ºÐ¼®¿¡ »ç¿ëµÇ´Â ¸ðµ¨(RNN - Recurrent Neural Network, LSTM - Long Short-Term Memory, GRU - Gated Recurrent Unit, ESN - Echo State Network) ¹× ÇнÀ ¾Ë°í¸®ÁòÀ» ¼Ò°³Çϰí, ±× ÀÌ·ÐÀû/½ÇÁ¦Àû Ç¥Çö ´É·Â ¹× ÇѰ踦 ¼³¸íÇÑ´Ù. ´õºÒ¾î, ³úÆÄ Àνĵ ¶Ù¾î³ ¼º´ÉÀ» º¸ÀÌ´Â RCNN - Recurrent Convolutional Neural NetworkÀ» ¼Ò°³Çϰí, °èÃþÀûÀ¸·Î ½ÅÈ£¸¦ ÀνÄÇÏ´Â °úÁ¤À» ¼Ò°³ÇÑ´Ù.
¾à·Â
2013 - ÇöÀç : UNIST Àü±âÄÄÇ»ÅͰøÇкΠÁ¶±³¼ö
2013 : ·Î·»½º ¹öŬ¸® ¿¬±¸¼Ò ¹Ú»çÈÄ Æç·Î¿ì
2012 : Àϸ®³ëÀÌ ÁÖ¸³´ë Àü»êÇаú ¹Ú»ç / ¹Ú»çÈÄ ¿¬±¸¿ø
ȨÆäÀÌÁö
http://sail.unist.ac.kr |
¡â ÇÁ·Î±×·¥À¸·Î ¡ã ¸Ç À§·Î
|
¢º Bayesian Learning
|
 |
°»ç
½ÅºÀ±â ±³¼ö(ºÎ°æ´ëÇб³)
³»¿ë
º£ÀÌÁî ÇнÀ(Bayesian Learning)Àº ÃÖ±Ù ±â°èÇнÀÀÇ ±Ù°£À» ÀÌ·ç´Â Å« ÁÙ±âÀÇ Çϳª·Î½á ºÒÈ®½ÇÇϰųª ºÒ¿ÏÀüÇÏ°í µ¥ÀÌÅ͵éÀ» È®·ü ¸ðÇüÀ¸·Î Ç¥ÇöÇÏ·Á´Â Åë°èÀû ÇнÀ ¹æ¹ýÀÌ´Ù. º» °ÀÇ¿¡¼´Â º£ÀÌÁî Á¤¸®¿Í °°Àº º£À̽º ÇнÀ¿¡ ´ëÇÑ ±âº»ÀûÀÎ °³³äµé°ú È®·ü ¸ðÇü, ¸ð¼ö ÃßÁ¤ ¹æ¹ý µî¿¡ ´ëÇÏ¿© ¼Ò°³Çϰí, ±â¼úÀÇ Àû¿ë ¹æÇâ¿¡ ´ëÇÏ¿© »ý°¢Çغ»´Ù.
¾à·Â
1999 - ÇöÀç : ºÎ°æ´ëÇб³ ITÀ¶ÇÕÀÀ¿ë°øÇаú ±³¼ö
1991 - 1995 : KAIST Àü»êÇаú ¹Ú»ç
1987 - 1991 : Çѱ¹Åë½ÅSW¿¬±¸¼Ò ¼±ÀÓ¿¬±¸¿ø
|
¡â ÇÁ·Î±×·¥À¸·Î ¡ã ¸Ç À§·Î
|
¢º Variational Bayesian Inference
|
 |
°»ç
¼®ÈïÀÏ ±³¼ö(°í·Á´ëÇб³)
³»¿ë
º£ÀÌÁî Ãß·ÐÀ» Æ÷ÇÔÇÑ Åë°èÀû ±â°èÇнÀ ±â¹ýµé Áß¿¡´Â ÃßÁ¤ÇϰíÀÚ ÇÏ´Â È®·ü ¹ÐµµÀÇ Á¤È®ÇÑ °è»êÀÌ ºÒ°¡´ÉÇÑ °æ¿ì°¡ ¸¹´Ù. ÀÌ¿¡ ´ëÇÑ ÇØ°áÃ¥À¸·Î ±Ù»çÈ(Approximation) ±â¹ýµéÀÌ ¸¹ÀÌ Àû¿ëµÇ°í ÀÖ´Ù. º» °¿¬¿¡¼´Â º¯ºÐ Ãß·Ð(Variational Inference)À» ÀÌ¿ëÇÑ ±Ù»çÈ ±â¹ý¿¡ ´ëÇÑ ±âº» °³³äÀ» ¼³¸íÇϰí, À̸¦ Ȱ¿ëÇÑ Variational Density Estimation, Variational Bayesian Linear Regression, Variational GMM/EMÀ» »ìÆìº»´Ù.
¾à·Â
2015 - ÇöÀç : °í·Á´ëÇб³ ³ú°øÇаú Á¶±³¼ö
2012 - 2014 : Univ. of North Carolina at Chapel Hill Postdoc Fellow
2012 : °í·Á´ëÇб³ ÄÄÇ»ÅÍ·ÀüÆÄÅë½Å°øÇаú °øÇйڻç
ȨÆäÀÌÁö
http://www.ku-milab.org |
¡â ÇÁ·Î±×·¥À¸·Î ¡ã ¸Ç À§·Î
|
¢º Deep Reinforcement Learning
|
 |
°»ç
¹ÚÁÖ¿µ ±³¼ö(°í·Á´ëÇб³)
³»¿ë
±íÀº °ÈÇнÀ(Deep Reinforcement Learning)Àº Çö´ë ÀΰøÁö´É ±â¼ú Áß °¡Àå Ȱ¹ßÇÑ ¿¬±¸°¡ ÀÌ·ç¾îÁö´Â ºÐ¾ß·Î½á, °ÈÇнÀ, Á¦¾îÀÌ·Ð ¹× µö·¯´× ±â¼úÀÌ °áÇÕµÇ¾î ½Ã³ÊÁö È¿°ú¸¦ °ÅµÎ¸ç ±Þ¼ÓÇÑ ¹ßÀüÀ» ÀÌ·ç°í ÀÖ´Ù. º» °Á¿¡¼´Â ±íÀº °ÈÇнÀ ±â¼úÀÇ °ú°Å¿Í ÇöÀ縦 ±¸¼ºÇÏ´Â ÁÖ¿ä ÁÖÁ¦ÀÎ Ito Process with Control Inputs, Stochastic Optimal Control, HJB Equation, MDP, Q-Learning, Deep Learning, DQN, Advanced DQN(Double DQN, Prioritized DQN, Dueling DQN), continous DQN(DDPG, NAF), AlphaGo µîÀÇ °³³äÀ» »ìÆìº¸°í, ÀÌ¿Í °ü·ÃÇÑ ¹Ì·¡ ±â¼úÀÇ ¹æÇâ¿¡ ´ëÇØ »ý°¢Çغ»´Ù.
¾à·Â
1993 - ÇöÀç : °í·Á´ëÇб³ Á¦¾î°èÃø°øÇаú ±³¼ö
1992 : University of Texas at Austin Àü±â¹×ÄÄÇ»ÅͰøÇаú ¹Ú»ç
1983 : ¼¿ï´ëÇб³ Àü±â°øÇаú Çлç
ȨÆäÀÌÁö
http://sites.google.com/site/rbfpark3 |
¡â ÇÁ·Î±×·¥À¸·Î ¡ã ¸Ç À§·Î
|
¢º Probabilistic Graphical Models
|
 |
°»ç
¾çÀºÈ£ ±³¼ö(KAIST)
³»¿ë
È®·ü ±×·¡ÇÁ ¸ðµ¨(Probabilistic Graphical Models)Àº ´Ùº¯·® È®·ü ºÐÆ÷¸¦ È¿À²ÀûÀ¸·Î Ç¥ÇöÇϱâ À§ÇÑ ÇÁ·¹ÀÓ¿öÅ©·Î¼, Åë°èÇÐ, Àü»êÇÐ µî¿¡¼ È®·ü º¯¼öµé »çÀÌÀÇ º¹ÀâÇÑ »ó°ü¼º, Àΰú¼ºµîÀÇ »óÈ£ ÀÛ¿ëÀ» ¸ðµ¨¸µÇϱâ À§ÇÏ¿© »ç¿ëµÈ´Ù. Medical diagnosis/Image understanding/Bioinformatics/NLP/Finance µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼ ´Ùº¯·® º¯¼ö ºÐ¼®À» À§ÇÑ ÇÙ½É Åø·Î »ç¿ëµÇ°í ÀÖ´Ù. º» °Á¿¡¼´Â, È®·ü ±×·¡ÇÁ ¸ðµ¨ÀÇ ±âº» °³³ä¿¡ ´ëÇØ¼ ¼³¸íÇϰí, ±â°è ÇнÀ °üÁ¡¿¡¼ÀÇ ±×·¡ÇÁ ¸ðµ¨ ÇнÀ ¹× Ã߷п¡ ´ëÇØ¼ »ìÆì º»´Ù.
¾à·Â
2016 - ÇöÀç : KAIST Àü»êÇкΠÁ¶±³¼ö
2014 - 2016 : IBM T.J. Watson Research Center, Research Staff Member
2014 : University of Texas at Austin ÄÄÇ»ÅͰúÇÐ ¹Ú»ç
ȨÆäÀÌÁö
https://sites.google.com/site/yangeh |
¡â ÇÁ·Î±×·¥À¸·Î ¡ã ¸Ç À§·Î
|
¢º Variational Inference for Matrix Factorization, Topic Modeling and Autoencoding
|
 |
°»ç
¹®ÀÏö ±³¼ö(KAIST)
³»¿ë
º¯ºÐ Ãß·Ð(Variational Inference)´Â º£ÀÌÁö¾È È®·ü ¸ðµ¨ÀÇ ÆÄ¶ó¹ÌÅÍ Ãß·ÐÀÇ ÇÙ½É ¹æ¹ý·Ð Áß ÇϳªÀÌ´Ù. º¯ºÐÃß·ÐÀ» Ȱ¿ëÇÏ¿©, ´Ù¾çÇÑ È®·ü ¸ðµ¨ÀÇ ÆÄ¶ó¹ÌÅÍ Ãß·ÐÀ» DeterministicÇÏ°Ô ¼öÇàÇÒ ¼ö ÀÖÀ¸¸ç, ÀÌ´Â »ùÇøµ ±â¹Ý Ã߷к¸´Ù ´õ¿í ºü¸¥ ¼Óµµ·Î ¸ðµ¨À» ÇнÀÇÒ ¼ö ÀÖ´Ù´Â ÀåÁ¡ÀÌ ÀÖ´Ù. ÀÌ ¹ßÇ¥´Â º¯ºÐ Ãß·ÐÀÇ ±âÃÊ, º¯ºÐ Ãß·ÐÀÇ Topic Modeling ¹× Matrix FactorizationÀÇ Àû¿ë, º¯ºÐ Ãß·ÐÀÇ Auto-Encoder°üÁ¡¿¡¼ÀÇ ÀçÇØ¼®À» ´Ù·é´Ù.
¾à·Â
2011 - ÇöÀç : KAIST »ê¾÷¹×½Ã½ºÅÛ°øÇÐ Á¶±³¼ö
2009 - 2011 : KAIST ¹Ú»çÈÄ ¿¬±¸¿ø
2008 : Carnegie Mellon University Àü»êÇÐ ¹Ú»ç
ȨÆäÀÌÁö
http://seslab.kaist.ac.kr
|
¡â ÇÁ·Î±×·¥À¸·Î ¡ã ¸Ç À§·Î
|
¢º Deep Convolutional Neural Network
|
 |
°»ç
±èÁظ𠱳¼ö(KAIST)
³»¿ë
Deep LearningÀº ÃÖ±Ù À½¼º ÀνÄ, ¿µ»ó ÀÎ½Ä ºÐ¾ßÀÇ °¢Á¾ ¼¼°è ±â·ÏÀ» »õ·Î ¼ö¸³ÇÏ¸é¼ °·ÂÇÑ ±â°èÇнÀ ¹æ¹ýÀ¸·Î °¢±¤¹Þ°í ÀÖ´Ù. ƯÈ÷ ±âÁ¸¿¡ »ç¶÷ÀÌ ¼öµ¿À¸·Î °¢Á¾ Feature¸¦ DesignÇÑ ÈÄ ±â°èÇнÀ ¹æ¹ý°ú °áÇÕÇÏ¿© ºÐ·ù, ÀÎ½Ä ¹®Á¦¸¦ ÇØ°áÇÏ´ø ÆÐ·¯´ÙÀÓÀ» Å»ÇÇÇÏ¿© Data·ÎºÎÅÍ ÀÚµ¿ÀûÀ¸·Î °èÃþÀûÀÎ FeatureµéÀ» ÇнÀÇÏ°í ºÐ·ù, ÀνıîÁö ÅëÇÕÇÏ¿© ¼öÇàÇÒ ¼ö ÀÖ´Ù´Â Á¡¿¡¼ Deep LearningÀº ±â°èÇнÀÀÇ »õ·Î¿î ÆÐ·¯´ÙÀÓÀ» Á¦½ÃÇÏ¿´´Ù°í ÇÒ ¼ö ÀÖ´Ù. º» °ÀÇ¿¡¼´Â ¿µ»ó ÀνÄÀ» À§ÇÑ Deep Convolutional Neural Network (CNN)À» ¼Ò°³Çϰí CNNÀÌ ±× µ¿¾È ¾î¶»°Ô ¹ßÀüµÇ¾î ¿Ô´ÂÁö »ìÆìº»´Ù. ¶ÇÇÑ ¿µ»ó ÀÎ½Ä À̿ܿ¡µµ Localization, Detection, Segmentation ¹®Á¦µé¿¡ CNNÀÌ È°¿ëµÈ »ç·Ê¿Í Image Captioning, Visual Question Answering ¹®Á¦¿¡¼ÀÇ ¼º°úµéµµ ¼Ò°³ÇÑ´Ù.
¾à·Â
2009 - ÇöÀç : KAIST Àü±â¹×ÀüÀÚ°øÇаú Á¶±³¼ö, ºÎ±³¼ö
2005 - 2009 : »ï¼ºÁ¾ÇÕ±â¼ú¿ø Àü¹®¿¬±¸¿ø
1998 - 2005 : MIT EECS ¼®»ç / ¹Ú»ç
ȨÆäÀÌÁö
https://sites.google.com/site/siitkaist |
¡â ÇÁ·Î±×·¥À¸·Î ¡ã ¸Ç À§·Î
|
¢º Multimodal Neural Networks for Vision and Language Applications
|
 |
°»ç
±è°ÇÈñ ±³¼ö(¼¿ï´ëÇб³)
³»¿ë
±Ù·¡ µö·¯´× ¸ðµ¨µéÀº, ½Ã°¢ Áö´É°ú ¾ð¾î Áö´ÉÀ» µ¿½Ã¿¡ ÇÊ¿ä·Î ÇÏ´Â ¿©·¯ ÀÛ¾÷µé¿¡ ¼º°øÀûÀ¸·Î Àû¿ëµÇ°í ÀÖ´Ù. Áï, CNNÀ» ÀÌ¿ëÇØ ½Ã°¢ Á¤º¸¸¦ Ç¥ÇöÇϰí, RNNÀ» ÀÌ¿ëÇÏ¿© ´Ü¾îÀÇ ¿¬¼ÓÀÎ ÀÚ¿¬¾î ¹®ÀåÀ» Ç¥ÇöÇÏ¿©, À̵éÀÇ »ó°ü°ü°è¸¦ ÇнÀ/¿¹ÃøÇÏ°Ô µÈ´Ù. º» °Á¿¡¼´Â CNN¿Í RNNÀÇ ±âº» °³³ä¿¡ ´ëÇØ °£´ÜÈ÷ ´Ù·é ÈÄ, Image/Video Captioning ¹× Question AnsweringÀÇ ´ëÇ¥ÀûÀÎ ¸ðµ¨µé¿¡ ´ëÇØ »ìÆìº¸°í, ÁÖ¿äÇÏ°Ô »ç¿ëµÇ´Â ÇнÀ¹ý ¹× Á¤±ÔÈ ±â¹ýµéÀ» ÀÌÇØÇÑ´Ù.
¾à·Â
2015 - ÇöÀç : ¼¿ï´ëÇб³ °ø°ú´ëÇÐ ÄÄÇ»ÅͰøÇаú Á¶±³¼ö
2013 - 2015 : ¹Ú»çÈÄ ¿¬±¸¿ø, Disney Research
2009 - 2013 : Carnegie Mellon University Àü»êÇÐ ¹Ú»ç
ȨÆäÀÌÁö
http://vision.snu.ac.kr |
¡â ÇÁ·Î±×·¥À¸·Î ¡ã ¸Ç À§·Î
|
¢º Speech Recognition System
|
 |
°»ç
±èÁöȯ ±³¼ö(¼°´ëÇб³)
³»¿ë
º» °ÀÇ´Â ´ëÈÇü »ç¿ëÀÚ ÀÎÅÍÆäÀ̽º ±¸Çö¿¡ ÇÊ¿äÇÑ À½Çâ¸ðµ¨, ¾ð¾î¸ðµ¨ ¹× µðÄÚ´õ ±¸Çö¿¡ ´ëÇÑ ÀÌÇØ¸¦ ¸ñÇ¥·Î ÇÑ´Ù. À½¼ºÀνÄÀÇ °øÇÐÀû ¹®Á¦Á¤ÀǸ¦ Á¦½ÃÇϸç, À½¼ºÀÎ½Ä ¹®Á¦ÀÇ º¹Àâµµ ¹× »ó¿ëÈµÈ À½¼º ÀÎÅÍÆäÀ̽º ±â¼úÀÇ ±¸Çö ³À̵µ¸¦ ºÐ¼®ÇÑ´Ù. ÇöÀç À½¼º ÀÎÅÍÆäÀ̽º ±¸Çö ±â¼úÀÇ ÁÖ·ù¸¦ ÀÌ·ç°í ÀÖ´Â DNN-HMMÀ» Áß½ÉÀ¸·Î ¼¼ºÎ ±â¼úÀ» ¼Ò°³ÇÑ´Ù. À½Çâ¸ðµ¨Àº HMM(Hidden Markov Models)¿¡ ±â¹ÝÇÑ ¹æ½Ä°ú DNN (Deep Neural Net)¿¡ ±â¹ÝÇÑ ¹æ½ÄÀ» »ìÆìº»´Ù. ¾ð¾î¸ðµ¨Àº n-gram ±â¹ÝÀÇ ¾ð¾î¸ðµ¨À» ¼Ò°³Çϸç, µðÄÚ´õ¿¡ ´ëÇÑ °³³äÀ» ¼³¸íÇÑ´Ù. ½ÇÁ¦ application ±¸Çö ½Ã »ç¿ëÇÑ °¡´ÉÇÑ toolkit ¹× À½¼º ÄÚÆÛ½º¿¡ ´ëÇØ¼ ¼Ò°³ÇÑ´Ù.
¾à·Â
2007 - ÇöÀç : ¼°´ëÇб³ ÄÄÇ»ÅͰøÇаú Á¶±³¼ö/ºÎ±³¼ö
2001 - 2007 : LGÀüÀÚ Ã¥ÀÓ/¼±ÀÓ ¿¬±¸¿ø
1998 - 2001 : University of Cambridge °øÇÐ ¹Ú»ç
ȨÆäÀÌÁö
http://speech.sogang.ac.kr |