Loading...

ÇмúÇà»ç

Korean AI Association

  >   ÇмúÇà»ç   >   ±¹³»Çмú´ëȸ

±¹³»Çмú´ëȸ

±âÁ¶ & ÃÊû°­¿¬
Plenary Talk  1

 

 

ÀÌ¿ëÀç ±³¼ö(University of Wisconsin-Madison)

 

Title:  Beyond Understanding: Toward Controllable and Agentic Multimodal Models

 

Abs:

The field of AI has been undergoing a transformative shift with the emergence of generalist models capable of performing a wide range of understanding and generation tasks. Trained on massive, internet-scale datasets---often unlabeled or weakly labeled---many of these models are multimodal, seamlessly integrating vision, language, audio, and action. In this talk, I will first present our work on LLaVA, a family of intelligent assistants that interpret the visual world and communicate naturally in language. I will highlight strategies to make these models more controllable, efficient, and agentic, enabling them to not only describe but also act upon the world around them. I will conclude with reflections on current limitations and opportunities for advancing toward more grounded, interactive AI systems.

 

Bio:

Yong Jae Lee is a Professor in the Department of Computer Sciences at the University of Wisconsin-Madison, and a Research Scientist at Adobe Research. His core research interests are in computer vision and machine learning, with a focus on creating robust AI systems that can understand our multimodal world with minimal human supervision. Before joining UW-Madison in 2021, he spent one year as an AI Visiting Faculty at Cruise, and before that, six years as an Assistant and then Associate Professor at UC Davis. He received his PhD from the University of Texas at Austin in 2012 advised by Kristen Grauman, and was a postdoc at Carnegie Mellon University (2012-2013) and UC Berkeley (2013-2014) advised by Alyosha Efros. He is a recipient of the Army Research Office Young Investigator Program Award, NSF CAREER Award, industry awards from Amazon, Adobe, Samsung, and Sony, UC Davis College of Engineering Outstanding Junior Faculty Award, UW-Madison SACM Student Choice Professor of the Year Award, Susan Beth Horwitz Professorship, and H. I. Romnes Faculty Fellowship. He and his collaborators received the Most Innovative Award at the COCO Object Detection Challenge ICCV 2019 and the Best Paper Award at BMVC 2020. 

 

Plenary Talk 2

 

 

Á¶°æÇö ±³¼ö(New York University)

 

Title:  Reality Checks

 

Abs

Despite its amazing success, leaderboard chasing has become something researchers dread and mock. When implemented properly and executed faithfully, leaderboard chasing can lead to both faster and easily reproducible progress in science, as evident from the amazing progress we have seen with machine learning, or more broadly artificial intelligence, in recent decades. It does not however mean that it is easy to implement and execute leaderboard chasing properly. In this talk, I will go over four case studies demonstrating the issues that ultimately prevent leaderboard chasing from a valid scientific approach. The first case study is on the lack of proper hyperparameter tuning in continual learning, the second on the lack of consensus on evaluation metrics in machine unlearning, the third on the challenges of properly evaluating the evaluation metrics in free-form text generation, and the final one on wishful thinking. By going over these cases, I hope we can collectively acknowledge some of our own fallacies, think of underlying causes behind these fallacies and come up with better ways to approach artificial intelligence research.

 
Bio:
Kyunghyun Cho is a professor of computer science and data science at New York University and an executive director of frontier research at the Prescient Design team within Genentech Research & Early Development (gRED). He became the Glen de Vries Professor of Health Statistics in 2025. He is also a CIFAR Fellow of Learning in Machines & Brains and an Associate Member of the National Academy of Engineering of Korea. He served as a (co-)Program Chair of ICLR 2020, NeurIPS 2022 and ICML 2022. He was one of the three founding Editors-in-Chief of the Transactions on Machine Learning Research (TMLR) until 2024. He was a research scientist at Facebook AI Research from June 2017 to May 2020 and a postdoctoral fellow at University of Montreal until Summer 2015 under the supervision of Prof. Yoshua Bengio, after receiving MSc and PhD degrees from Aalto University April 2011 and April 2014, respectively, under the supervision of Prof. Juha Karhunen, Dr. Tapani Raiko and Dr. Alexander Ilin. He received the Samsung Ho-Am Prize in Engineering in 2021. He tries his best to find a balance among machine learning, natural language processing, and life, but almost always fails to do so.
 
ÃÊû°­¿¬

 

 
Á¤Çýµ¿ PM (IITP)
 
Title:  AGI·Î °¡´Â ¿©Á¤
 
Abs:
AGI·Î °¡´Â ¿©Á¤Àº ´Ü¼øÇÑ ÀΰøÁö´ÉÀÇ ¼º´É Çâ»óÀÌ ¾Æ´Ï¶ó, Àΰ£ ¼öÁØÀÇ ¹ü¿ë Áö´É¿¡ µµ´ÞÇϱâ À§ÇÑ ÃÑüÀû ±â¼ú Áý¾àÀÇ °úÁ¤ÀÔ´Ï´Ù. ÃÖ±ÙÀÇ ±Û·Î¹ú ±â¼ú µ¿ÇâÀ» º¸¸é, ´ë±Ô¸ð ¾ð¾î ¸ðµ¨(LLM)À» ³Ñ¾î ¸ÖƼ¸ð´Þ ó¸®, Åø ±â¹Ý ¿¡ÀÌÀüÆ®, Àå±â ¸Þ¸ð¸®, Àڱ⠹ݼº µî AGI¿¡ ÇÊ¿äÇÑ ÇÙ½É ´É·ÂµéÀÌ ºü¸£°Ô °íµµÈ­µÇ°í ÀÖ½À´Ï´Ù. ÀÌ´Â Àΰ£ ¼öÁØÀÇ ÀÌÇØ·Â, ÇнÀ·Â, ÀûÀÀ·ÂÀ» Áö´Ñ ÀΰøÁö´ÉÀ» ÇâÇÑ Å½±¸ÀÇ °úÁ¤À̸ç, ÀÌ °úÁ¤Àº ´Ü¼øÈ÷ ¸ðµ¨ÀÇ ¼º´É °³¼±ÀÌ ¾Æ´Ï¶ó ÀÎÁöÀû ´É·ÂÀÇ º»Áú¿¡ ´ëÇÑ ±íÀº ÀÌÇØ¿Í »õ·Î¿î »ç°í¹æ½ÄÀ» ã´Â °ÍÀÔ´Ï´Ù. ÀÌ ¹ßÇ¥¿¡¼­´Â AGIÀÇ °³³ä°ú Àǹ̸¦ µÇ¤°í, ±×°ÍÀÌ Àηù¿¡°Ô ´øÁö´Â µµÀü°ú °¡´É¼º, ±×¸®°í ¿ì¸®°¡ ÁغñÇØ¾ß ÇÒ ¹æÇâ¿¡ ´ëÇØ ÇÔ²² »ý°¢ÇØ º¸°íÀÚ ÇÕ´Ï´Ù.
 
Bio:

- ÇзÂ

 • °æÈñ´ë ÀüÀÚ°øÇÐ ¹Ú»ç
 • °æÈñ´ë ÀüÀÚ°øÇÐ ¼®»ç
 • °æÈñ´ë ÀüÀÚ°øÇÐ Çлç

- ÁÖ¿ä°æ·Â

 •  (Çö) IITP AI PM
 •  (Àü) KETI ÀΰøÁö´É¿¬±¸¼¾ÅÍ ¼¾ÅÍÀå
 •  (Àü) KETI ÀΰøÁö´É»ç¾÷±âȹ´Ü ´ÜÀå
 
ÃÊû°­¿¬

 

 
±èº´ÇÐ Ä«³ª³ª ¼º°ú¸®´õ (īī¿À)
 
Title:  Ä«Ä«¿ÀÀÇ AI ¸ðµ¨ ‘Ä«³ª³ª(Kanana)’ °³¹ß »ç·Ê - Agentic AI¸¦ ÇâÇÑ AI ¸ðµ¨ÀÇ ÁøÈ­
 
Abs:
º» ¹ßÇ¥¿¡¼­´Â īī¿À°¡ ÀÚü °³¹ßÇÑ AI ¸ðµ¨ ¶óÀξ÷ ‘Ä«³ª³ª ¸ðµ¨ ÆÐ¹Ð¸®’ÀÇ ±¸Á¶¿Í °³¹ßÀü·«, ±×¸®°í ½ÇÁ¦ ¼­ºñ½º Àû¿ë »ç·Ê¸¦ ¼Ò°³ÇÑ´Ù.
Ä«³ª³ª ¸ðµ¨ ÆÐ¹Ð¸®´Â ‘»ç¶÷ó·³ º¸°í µè°í ¸»ÇÏ´Â ¸ðµ¨’À» ¸ñÇ¥·Î, ÅØ½ºÆ®, À̹ÌÁö, ¿µ»ó, À½¼º µî ´Ù¾çÇÑ ÇüÅÂÀÇ µ¥ÀÌÅ͸¦ ó¸®ÇÒ ¼ö ÀÖ´Â ¸ðµ¨µé·Î ¼³°èµÇ¾ú´Ù. Å©°Ô ¾ð¾î¸ðµ¨À» Áß½ÉÀ¸·Î, ¸ÖƼ¸ð´Þ ¾ð¾î¸ðµ¨, ºñÁÖ¾ó »ý¼º ¸ðµ¨, À½¼º ¸ðµ¨·Î ±¸¼ºµÇ¸ç, °¢±â ´Ù¸¥ ¸ñÀû¿Í Å©±â¿¡ µû¶ó ¼¼ºÐÈ­µÇ¾î ÀÖ´Ù. ƯÈ÷, ´Ü¼øÇÑ ¾ð¾î »ý¼º¿¡ ±×Ä¡Áö ¾Ê°í, ´ëÈ­ÀÇ È帧À» ÀÌÇØÇϰí Á¤È®ÇÑ Áö½ÄÀ» Á¦°øÇÏ¸ç »ç¿ëÀÚÀÇ Àǵµ¿¡ ¸ÂÃç ÀÚ¿¬½º·´°Ô ½ÇÇàÀ» ¿¬°áÇÏ´Â µî »ç¿ëÀÚ Áß½ÉÀÇ ´Éµ¿Àû AI ¿¡ÀÌÀüÆ®¸¦ ±¸ÇöÇÏ´Â µ¥ ÁßÁ¡À» µÎ°í ÀÖ´Ù. À̸¦ ÅëÇØ ±âÁ¸ LLM ±â¹Ý Á¢±Ù¸¸À¸·Î´Â ÇѰ谡 ÀÖ´Â ¿µ¿ªÀ» º¸¿ÏÇϸç, »ç¿ëÀÚ¿¡°Ô º¸´Ù Á÷°üÀûÀ̰í Â÷º°È­µÈ AI °æÇèÀ» Á¦°øÇϰí ÀÖ´Ù.
¶ÇÇÑ, īī¿À´Â ±¹³» AI »ýŰèÀÇ ¹ßÀüÀ» À§ÇØ 2025³â 2¿ùºÎÅÍ Ä«³ª³ª ¸ðµ¨À» ¿ÀǼҽº·Î °ø°³Çϰí ÀÖ´Ù. º» ¹ßÇ¥¿¡¼­´Â Ä«³ª³ª ¸ðµ¨ÀÇ °³¹ßöÇаú ±â¼úÀû ±¸¼º»Ó ¾Æ´Ï¶ó, ¿ÀǼҽºÈ­ °úÁ¤±îÁö Æø³Ð°Ô ´Ù·ê ¿¹Á¤ÀÌ´Ù.
 
Bio:
- °æ·Â
±èº´ÇÐ Ä«³ª³ª ¼º°ú¸®´õ´Â 20³â ÀÌ»ó AI °Ë»ö ºÐ¾ß¿¡ ¸ö´ã¾Æ¿Â Àü¹®°¡ÀÔ´Ï´Ù. Ãʱ⠽ºÅ¸Æ®¾÷ ‘ù´«’À» ½ÃÀÛÀ¸·Î, NHN °Ë»ö°³¹ß¼¾ÅÍÀå, »ï¼ºÀüÀÚ ¹Ìµð¾î¼Ö·ç¼Ç¼¾ÅÍ(MSC) ºÎÀå, īī¿Àºê·¹ÀÎ °¢ÀÚ´ëÇ¥ µîÀ» ¿ªÀÓÇÏ¸ç ±¹³» °Ë»ö ±â¼úÀÇ ¹ßÀü°ú ÀΰøÁö´É »ýŰèÀÇ ±â¹ÝÀ» ´ÙÁ®¿Ô½À´Ï´Ù.
2024³â 6¿ùºÎÅʹ īī¿ÀÀÇ ÀÚü AI ¸ðµ¨ ‘Ä«³ª³ª(Kanana)’ °³¹ßÀ» ÃѰýÇϸç, ÃÊ°Å´ë ¾ð¾î¸ðµ¨ ¹× ¸ÖƼ¸ð´Þ ¸ðµ¨ÀÇ °³¹ßÀ» À̲ø°í ÀÖ½À´Ï´Ù. ƯÈ÷ ÅØ½ºÆ®, À½¼º, À̹ÌÁö, ¿µ»ó µî ´Ù¾çÇÑ ¸ð´Þ¸®Æ¼¸¦ ¾Æ¿ì¸£´Â ¸ðµ¨À» ±â¹ÝÀ¸·Î AI ±â¼ú Çõ½ÅÀ» ÁÖµµÇϸç, À̸¦ īī¿À ¼­ºñ½º Àü¹Ý°ú »ê¾÷ ÇöÀå¿¡ Àû¿ëÇϱâ À§ÇÑ È®Àå Àü·«¿¡ ÁýÁßÇϰí ÀÖ½À´Ï´Ù.
 
- ÇзÂ
~1993³â: KAIST ´ëÇпø Àü»êÇаú ¼®»ç
~1990³â: KAIST Àü»êÇаú Çлç