Site
»çÀÌÆ®
ȸ¿øÁ¤º¸
³í¹®
ÇÐȸ¼Ò°³
ÀΰøÁö´ÉÇÐȸ
ȸÀåÀλç
¿¬Çõ
ÀÓ¿ø¸í´Ü
Á¤°ü
ÇùÂù±â°ü
¿À½Ã´Â ±æ
ÇмúÇà»ç
±¹³»Çмú´ëȸ
ºÐ°úÇмú´ëȸ
ÃâÆǹ°
Çмú´ëȸ ³í¹®Áý
°Ô½ÃÆÇ
ÇÐȸ¼Ò½Ä
Çà»ç¾È³»
±¸ÀÎ/±¸Á÷¶õ
ȸ¿øÁ¤º¸
ȸ¿ø°¡ÀԾȳ»
Ưº°È¸¿ø»ç
ÇмúÇà»ç
Korean AI Association
ÇмúÇà»ç
±¹³»Çмú´ëȸ
ºÐ°úÇмú´ëȸ
2024 Çѱ¹ÀΰøÁö´ÉÇÐȸ Ãß°èÇмú´ëȸ
Àλ縻
Çà»ç¾È³»
ÇÁ·Î±×·¥ºÏ
ÇÁ·Î±×·¥
Æ©Å丮¾ó
±âÁ¶ & ÃÊû°¿¬
³í¹® ¸ðÁý
³í¹®Á¦Ã⠾ȳ»
Æ÷½ºÅÍ Áغñ ¾È³»
ÈÄ¿ø»ç
Çà»çÀå ¾È³»
»çÀüµî·Ï
> ÇмúÇà»ç >
±¹³»Çмú´ëȸ
±¹³»Çмú´ëȸ
ÇÁ·Î±×·¥
2024 (»ç)Çѱ¹ÀΰøÁö´ÉÇÐȸ Ãß°èÇмú´ëȸ ÇÁ·Î±×·¥(»ï¼ºSDSŸ¿ö ¼°ü ÁöÇÏ1Ãþ, ¿Â¿ÀÇÁ µ¿½ÃÁøÇà)
11¿ù 21ÀÏ(¸ñ)
³»¿ë
½Ã°£
¼¼ºÎ³»¿ë ¹×
Àå¼Ò
µî·Ï
11:00-13:00
µî·Ï
<ÁöÇÏ 1Ãþ ¸¶Á©¶õȦ µî·Ï´ë>
Æ©Å丮¾ó ¼¼¼Ç 1
13:00-15:00
Developing a Medical LLM using synthetic medical record
/ ÃÖÀ±Àç ±³¼ö(KAIST)
<¸¶Á©¶õȦ>
Recent Trends in Deepfake Image and Video Detection
/ ÃÖÁ¾¿ø ±³¼ö(Áß¾Ó´ëÇб³)
<ÆĽºÄ®È¦>
ÈÞ½Ä
15:00-15:20
ÈÞ½Ä
Æ©Å丮¾ó ¼¼¼Ç 2
15:20-17:20
Multimodal Data Curation for Commonsense Reasoning: From Web, Simulation to Real-World Applications
/ À¯¿µÀç ±³¼ö(¿¬¼¼´ëÇб³)
<¸¶Á©¶õȦ>
Generative AI for Healthcare
/ ¿¹Á¾Ã¶ ±³¼ö(KAIST)
<ÆĽºÄ®È¦>
11¿ù 22ÀÏ(±Ý)
³»¿ë
½Ã°£
¼¼ºÎ³»¿ë ¹×
Àå¼Ò
µî·Ï
08:30-09:00
µî·Ï
<ÁöÇÏ 1Ãþ ¸¶Á©¶õȦ µî·Ï´ë>
°³È¸¼±¾ð
09:00-09:10
°³È¸¼±¾ð/ ±è¿ë´ë ȸÀå
Ãà»ç/ ±èÇý¿µ »ó¹«(»ï¼ºSDS)
<¸¶Á©¶õȦ>
Plenary Talk 1
09:10-10:00
Deep Learning and Foundation Models: Theoretical Insights and Label-Efficient Learning
/
Prof. Robert D. Nowak(University of Wisconsin-Madison)_¿Â¶óÀÎ ÁøÇà
<¸¶Á©¶õȦ>
Plenary Talk 2
10:00-10:50
Harnessing AI for Bayesian Inference: From Neural Conformal Inference to Neural Adaptive Empirical Bayes
/ Prof. Xiao Wang(Purdue University)_¿Â¶óÀÎ ÁøÇà
<¸¶Á©¶õȦ>
ÈÞ½Ä
10:50-11:00
ÈÞ½Ä
½Ã»ó½Ä
11:00-11:30
ÇÐȸ ¿ì¼ö³í¹® ½Ã»ó, ÇÑȽýºÅÛ AI Challenge ½Ã»ó
<¸¶Á©¶õȦ>
Æ÷½ºÅÍ ¼¼¼Ç
11:30-12:00
Æ÷½ºÅÍ ¹ßÇ¥
<ÁöÇÏ 1Ãþ ·Îºñ>
Áß½Ä
12:00-13:00
Áß½Ä, Á¤±â ÀÌ»çȸ(´ë»ó: ÇÐȸ ÀÓ¿ø)
<ÁöÇÏ 1Ãþ, 2Ãþ ½Ä´ç>
³í¹®¹ßÇ¥ ¼¼¼Ç
13:00-13:30
¿ì¼ö³í¹® ¹ßÇ¥
<¸¶Á©¶õȦ>
ÃÊû°¿¬
13:30-14:00
Áö´ÉÇü ¾÷¹« Çù¾÷ ¼Ö·ç¼Ç (Brity Works + Copilot)/ ⼺Áß »ó¹«(»ï¼ºSDS)
<¸¶Á©¶õȦ>
ÈÞ½Ä
14:00-14:10
ÈÞ½Ä
±âȹ¼¼¼Ç 1
14:10-15:10
Foundation models for multimodal and time-series data
<¸¶Á©¶õȦ>
ÇÑȽýºÅÛ Æ¯º°¼¼¼Ç
<ÆĽºÄ®È¦>
ÈÞ½Ä
15:10-15:20
ÈÞ½Ä
±âȹ¼¼¼Ç 2
15:20-16:20
±¹Á¦ÇÐȸ ¿ì¼ö³í¹®¹ßÇ¥¼¼¼Ç
<¸¶Á©¶õȦ>
¼¿ï AI Çãºê: ±â¾÷ÀÇ AI Çõ½Å »ç·Ê¿Í ±â¼úÀû ÁøÈ
<ÆĽºÄ®È¦>
ÈÞ½Ä
16:20-16:30
ÈÞ½Ä
±âȹ¼¼¼Ç 3
16:30-17:30
»ý¼º ¸ðÇü (Generative Model)
<¸¶Á©¶õȦ>
AI À§Çù°ú ´ëÀÀ
<ÆĽºÄ®È¦>
ÈÞ½Ä
17:30-17:40
ÈÞ½Ä
¸¸Âù
17:40
¸¸Âù
<ÁöÇÏ 2Ãþ ´Ù¸ñÀûȦ>
11¿ù 23ÀÏ(Åä)
Private Session_³»ºÎ ¿öÅ©¼ó
* Plenary Talk 3 ¿¬»çÀÇ °³ÀÎ »çÁ¤À¸·Î ¹ßÇ¥°¡ Ãë¼ÒµÇ¾úÀ½À» ¾Ë·Áµå¸³´Ï´Ù. ¾çÇظ¦ ºÎŹµå¸³´Ï´Ù.