2024 (»ç)Çѱ¹ÀΰøÁö´ÉÇÐȸ ÇÏ°èÇмú´ëȸ ÇÁ·Î±×·¥<ºÎ»ê º¤½ºÄÚ, ÄÁº¥¼ÇȦ> |
8¿ù 15ÀÏ (¸ñ) (»ç)Çѱ¹ÀΰøÁö´ÉÇÐȸ ¿¬°è KIRDÀÇ "Çкλý/´ëÇпø»ý/¹Ú»çÈÄ¿¬±¸¿øÀ» À§ÇÑ ³×Æ®¿öÅ·/ °æ·Â°³¹ß ¼¼¼Ç" |
³»¿ë |
½Ã°£ |
¼¼ºÎ³»¿ë (½ÅûÀÚ¿¡ ÇÑÇØ Âü¼® °¡´É, Á¶±â ¸¶°¨) |
Ä¿¸®¾î ÄܼƮ |
14:30-18:00 |
³ëÁØÇõ ±³¼ö(ÀÌÈ¿©ÀÚ´ëÇб³), ¹é½Â·Ä ±³¼ö(UNIST), ÀÌÁ¾Áø ¿¬±¸¿ø(»ï¼ºÀüÀÚ), ¹ÚÈñ¿ë ¼±ÀÓ(·Ôµ¥À̳뺣ÀÌÆ®) |
8¿ù 16ÀÏ (±Ý) |
³»¿ë |
½Ã°£ |
¼¼ºÎ³»¿ë ¹× Àå¼Ò |
µî·Ï |
9:00∼ |
µî·Ï<1Ãþ ·Îºñ> |
Æ©Å丮¾ó ¼¼¼Ç 1 &
Á¤º¸Åë½Å±âȹÆò°¡¿ø ¼¼¼Ç |
13:00-15:00 |
Recent Advances Towards Efficient Transformers in Vision Domain
/ ¹é½Â·Ä ±³¼ö(UNIST)<101+102> |
Large Language Models: Ability and Alignment
/ ±èÇüÈÆ ±³¼ö(UNIST)<104+105> |
Physics-inspired Deep Learning
/ ¹Ú³ë¼º ±³¼ö(KAIST)<106+107> |
AIºÐ¾ß ±¹Á¦°øµ¿¿¬±¸ ¼º°ú±³·ùȸ
/Á¤º¸Åë½Å±âȹÆò°¡¿ø<103> |
ÈÞ½Ä |
15:00-15:10 |
ÈÞ½Ä |
Æ©Å丮¾ó ¼¼¼Ç 2 &
Á¤º¸Åë½Å±âȹÆò°¡¿ø ¼¼¼Ç |
15:10-17:10 |
Diffusion Models: Foundation and Algorithm
/ ÀÓ¼ººó ±³¼ö(°í·Á´ëÇб³)<101+102> |
Innovation in text summarization: the role and prospects of large language models
/ ¼ÛȯÁØ ±³¼ö(KAIST)<104+105> |
Practical set-ups and methods for continual learning
/ ÃÖÁ¾Çö ±³¼ö(¼¿ï´ëÇб³)<106+107> |
AIºÐ¾ß ±¹Á¦°øµ¿¿¬±¸ ¼º°ú±³·ùȸ
/Á¤º¸Åë½Å±âȹÆò°¡¿ø<103> |
ÈÞ½Ä |
17:10-17:25 |
ÈÞ½Ä ¹× À̵¿ |
Á¤±âÃÑȸ (´ë»ó : Á¤È¸¿ø)<103> |
¿ÀÇÁ´× |
°³È¸½Ä |
17:25-17:30 |
°³È¸¼±¾ð (Çѱ¹ÀΰøÁö´ÉÇÐȸ ±è¿ë´ë ȸÀå)<205>
Àλ縻(³»¿Üºó) |
ÃÊû°¿¬ |
17:30-18:10 |
¹Ìµð¾îÀÇ °üÁ¡¿¡¼ ¹Ù¶óº» ÀΰøÁö´É, ÇöȲ°ú Àü¸Á/ ¹ÚÅ¿õ ÀÇÀå(³ì¼Æ÷·³)<205> |
Plenary Talk 1 |
18:10-19:10 |
Towards Learning AI Agents for Solving Real-world Tasks / ÀÌÈ«¶ô ±³¼ö(University of Michigan)_¿Â¶óÀÎ ÁøÇà<205> |
¿ì¼ö³í¹® ½Ã»ó & ¸®¼Á¼Ç |
19:10-20:00 |
¿ì¼ö³í¹® ½Ã»ó & ¸®¼Á¼Ç<205> |
8¿ù 17ÀÏ (Åä) |
³»¿ë |
½Ã°£ |
¼¼ºÎ³»¿ë ¹× Àå¼Ò |
µî·Ï |
08:00-09:00 |
µî·Ï<1Ãþ ·Îºñ> |
Plenary Talk 2 |
09:00-10:00 |
Mitigating Catastrophic AI Risks with Safe-by-Design AI / Prof. Yoshua Bengio(Université de Montreal)_¿Â¶óÀÎ ÁøÇà<101~108> |
Plenary Talk 3 |
10:00-11:00 |
AI on the Edge/ Fatih Porikli(Qualcomm AI Research / Senior director, Global Lead of AI Systems at Qualcomm AI Research)_¿Â¶óÀÎ ÁøÇà<101~108> |
ÈÞ½Ä |
11:00-11:10 |
ÈÞ½Ä |
³í¹®¹ßÇ¥ ¼¼¼Ç |
11:10-11:30 |
¿ì¼ö³í¹®¹ßÇ¥ ¼¼¼Ç<101~108> |
Æ÷½ºÅÍ ¼¼¼Ç |
11:30-12:00 |
Æ÷½ºÅÍ ¼¼¼Ç<1Ãþ ·Îºñ> |
Áᫎ |
12:00-13:30 |
Áß½Ä<ÁöÇÏ 1Ãþ ½Ä´ç>, Á¤±â ÀÌ»çȸ(´ë»ó : ÀÓ¿ø) |
±¹Á¦ÇÐȸ ¿ì¼ö³í¹®¼¼¼Ç |
13:30-14:30 |
ICML review<101~108> |
CV<104> |
Special Invited Talk |
14:30-15:20 |
ÄÄÇ»ÅÍ ºñÀü ºÐ¾ß »ý¼ºAI ±â¼ú µ¿Çâ ¹× ¿¬±¸ »ç·Ê / ÁÖÀç°É ±³¼ö(KAIST)<101~108> |
ÈÞ½Ä ¹× À̵¿ |
15:20-15:40 |
ÈÞ½Ä ¹× À̵¿ |
±âȹ¼¼¼Ç 1 |
15:40-16:40 |
ÀΰøÁö´É ÆíÇ⼺ ÃøÁ¤ ¹× ¿ÏÈ ÇÁ·¹ÀÓ¿öÅ©<101~108> |
Scientific Machine Learning: Theory and Application<104> |
¹êµ÷ ¹× °ÈÇнÀ ÀÌ·Ð (Bandit and Reinforcement Learning Theory)<105> |
Recent Advances in Causal Inference<109> |
Advances in Time Series Forecasting with Novel Approaches<110> |
ÈÞ½Ä |
16:40-17:00 |
ÈÞ½Ä |
±âȹ¼¼¼Ç 2 |
17:00-18:30 |
Multi-Modal Embedding meets Robotics<104> |
ETRI ¼¼¼Ç<105> |
Best Practices for Generative AI with LLMs on a Supercomputer<109> |
°Å´ë ¸ðµ¨ ÇнÀ ÀÌÈÄÀÇ ¸Ó½Å ·¯´×<110> |
¸¸Âù |
18:30-20:00 |
¸¸Âù<205> |